Let’s look at the stabilities of one’s conjugate basics ClO
Such anions is actually stabilized to deeper the quantity, it offers decreased appeal to own proton hence, will work as weak ft. Consequently, the fresh new relevant acid could be most effective due to the fact poor conjugate foot has actually strong acidic and a powerful conjugate foot has actually weak acid.
This means ClOcuatro – will have maximum stability and therefore will have a minimum attraction for W. Thus CIO4 – will be weakest base and its conjugate acid HCIO4 is the strongest acid http://datingranking.net/escort-directory/lansing/. When aqueous ammonia is added to CuSO4 solution, the solution turns deep blue due to the formation of tetrammine copper (II) complex, [Cu(H2O)six] 2+ (aq) + 4NHstep step three (aq) \(\rightleftharpoons\) [Cu(NH3)4] 2+ (aq), among H2O and NH3 which is stronger Lewis base. Answer: Copper (II) sulphate solution, for example contains the blue hexaaqua copper (II) complex ion. In the first stage of the reaction, the ammonia acts as a Bronsted – Lowry base. With a small amount of ammonia solution, hydrogen ions are pulled off two water molecules in the hexaaqua ion. This produces a neutral complex, one carrying no charge. If you remove two positively charged hydrogen ions from a 2+ ion, then obviously there isn’t going to be any charge left on the ion. Because of the lack of charge, the neutral complex isn’t soluble in water and so you get a pale blue precipitate. [Cu(H2O) 6 ] 2+ + 2NH3 [Cu(H2O)4OH] + 2NH4 + This precipitate is often written as Cu(OH)2 and called copper (II) hydroxide. The reaction is reversible because ammonia is only a weak base. That precipitate dissolves if you add an excess of ammonia solution, giving a deep blue solution. The ammonia uses its lone pair to form a coordinate covalent bond with the copper. It is acting as an electron pair donor – a Lewis base. Question 6. The concentration of hydroxide ion in a water sample is found to be 2.5 x ten -6 M. Identify the nature of the solution. Answer: The concentration of OH ion in a water sample is found to be 2.5 x 10 -6 M pOH = – log10 [OH – ] pOH = – 1og10 [2.5 x 10 -6 ] = – log10 [2.5] – log10 [10 -6 ] = – 0.3979 – ( – 6) = – 0.3979 + 6 pOH = 5.6 Since pOH is less than 7, the solution is basic Question 7. A lab assistant prepared a solution by adding a calculated quantity of HCl gas 25°C to get a solution with [H3O + ] = 4 x 10 5 M. Is the solution neutral (or) acidic (or) basic. Answer: [H3O + ] = 4 x M pH = – log10 [H3O + ] pH = – 1og10[4 x 10 5 ] pH = – log10 – log10 [10 -5 ] pH = – 0.6020 – ( – 5) = – 0.6020 + 5 pH = 4.398 Therefore, the solution is acidic. Question 8. Calculate the pH of 0.04 M HNO3 solution. Answer: Concentration of HNO3 = 0.04M [H3O + ] = 0.04 mol dm -3 pH = – 1og[H3O + ] = – log (0.04) = – log(4 x 10 -2 ) = 2 – log4 = 2 – 0.6021 = 1.3979 = 1.40 Matter 9. Explain solubility equipment. Answer: Solubility tool: It is defined as the product of the molar concentration of brand new constituent ions, each increased into stamina of the stoichiometric coefficient in a beneficial balanced equilibrium picture.The brand new ammonia replaces four of your drinking water molecules within the copper supply tetramminc diaqua copper (II) ions
Related Posts
Print article | This entry was posted by Morgan Greenhalgh on June 25, 2022 at 10:38 am, and is filed under Uncategorized. Follow any responses to this post through RSS 2.0. Both comments and pings are currently closed. |
Comments are closed.